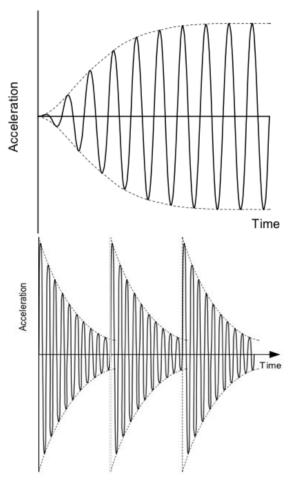


Deckenschwingungen als Problem, aus Hamm (2017)

Untersuchungen zum Schwingungsverhalten von Holz-Beton-Verbund-Konstruktionen (HBV)

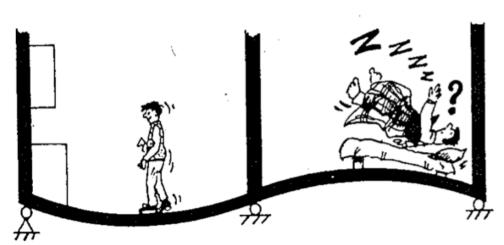
Vortrag zur Masterarbeit


Universität Stuttgart 07.12.2020

Steffen zu Jeddeloh

Inhaltsübersicht

Schwingungsverhalten von HBV - Konstruktionen

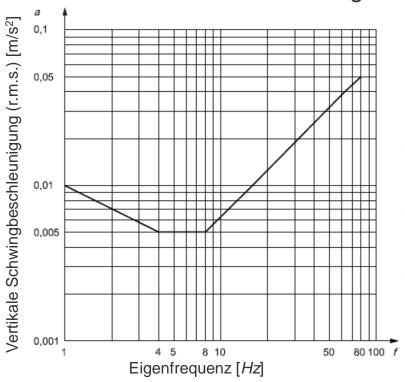

- 1. Grundlagen zum Schwingungsverhalten
- 2. Nachweise nach den aktuellen Eurocodes EC5-1-1 (2010) und EC5-2 (2010)
- 3. Nachweis gemäß dem Stand der Technik
- **4.** Nachweise nach den zukünftigen Eurocodes EC5-1-1 (202X) und EC5-2 (202X)
- 5. Vergleich der vorgestellten Nachweiskonzepte
- **6.** Zusammenfassung und Ausblick

Menscheninduzierte Schwingungen, aus Smith et al. (2009)

1. Grundlagen zum Schwingungsverhalten

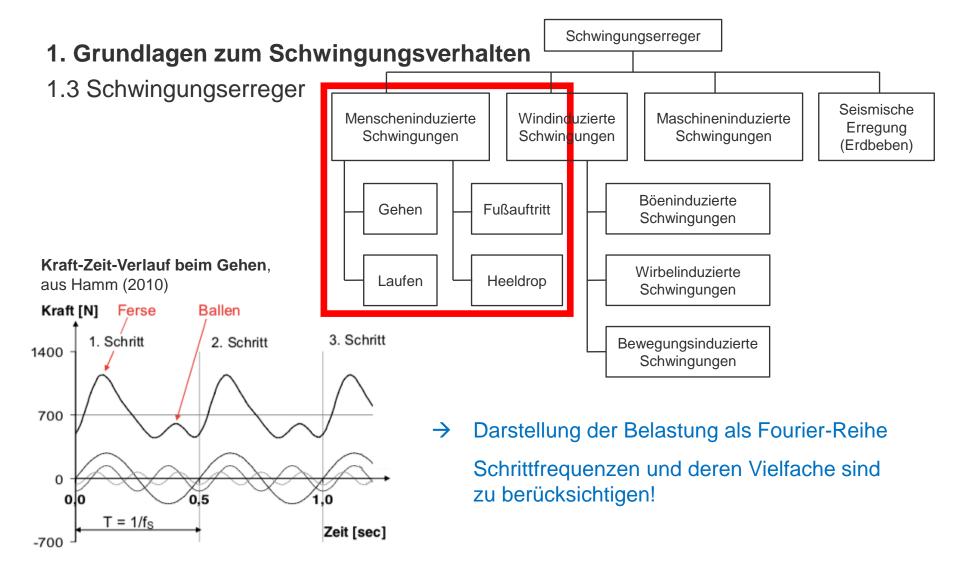
1.1 Darstellung der Schwingungsproblematik

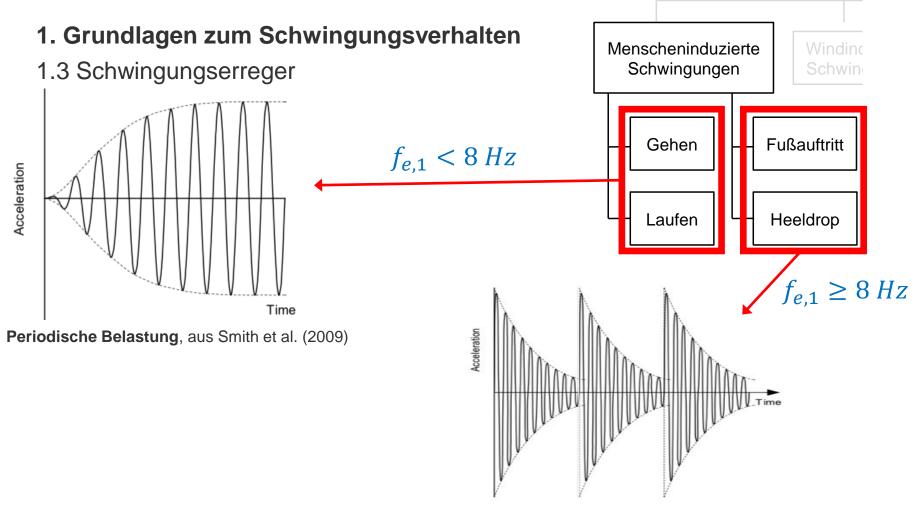
Deckenschwingungen als Problem, aus Hamm (2017)


Wichtige Parameter:

- Mitschwingende Masse M*
- Belastung durch Fußgänger
- Spannweite I
- Biegesteifigkeit El_{I,ef}
- Dämpfung ζ
- Menschliche Wahrnehmung

→ unangenehme und störende Schwingungen müssen vermieden werden!


1. Grundlagen zum Schwingungsverhalten


1.2 Menschliche Wahrnehmung

- → Wahrnehmung ist von Mensch zu Mensch unterschiedlich
- → Wahrnehmung von Schwingungen hängt von der Frequenz ab
- → Effektivwert wird zur Beurteilung von Schwingungen herangezogen

Basiskurve ISO 10137, aus Hamm et al. (2018)

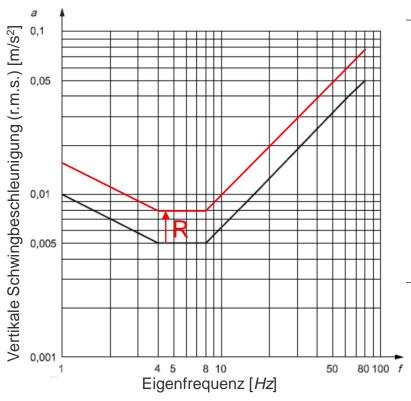
Transiente Belastung, aus Smith et al. (2009)

1. Grundlagen zum Schwingungsverhalten

1.4 Dämpfung

→ Dämpfung besteht aus vielen Mechanismen und ist daher schwierig zu bestimmen Genaue Ermittlung erst am fertiggestellten Bauwerk → Planung?

	2. Schwingungsnachweis nach aktueller Norm 2.1 Eurocode 5-1-1 (2010)	3. Schwingungsnachweis nach dem Stand der Technik: Hamm (2010)
Frequenzkriterium $f_{e,1} = \frac{\pi}{2 \cdot l^2} \cdot \sqrt{\frac{EI}{m}}$	≥ 8 <i>Hz</i>	≥ 4,5 <i>Hz</i>
Steifigkeitskriterium $\frac{w}{F} \leq w_{grenz}$	Ja	Ja
Geschwindigkeitskriterium	Ja	Nein
Beschleunigungskriterium	Nein	Ja


Nein

Ja

Konstruktive Maßnahmen

4. Schwingungsnachweis nach zukünftiger Norm

4.1 Eurocode 5-1-1 (202X)

Basiskurve ISO 10137, aus Hamm et al. (2018)

	Komfortklasse					
Kriterium	1	2	3	4	5	6
Steifigkeitskriterium $w_{1\ kN}\ [mm] \leq$	0,25		0,5	0,8	1,2	1,6
Antwortfaktor R	4	8	12	20	30	40
Frequenzkriterium f₁ [Hz] ≥	4,5					
Beschleunigungskriterium $a_{rms,lim}[m/s^2] \leq$	0,0 0 5 R					
Geschwindigkeitskriterium $v_{rms,lim}[m/s] \leq$	0,0001 R					

- → Beschleunigung und Geschwindigkeit sind Effektivwerte
- → Nachweise werden mit der menschlichen Wahrnehmung verknüpft

2. Schwingungsnachweis nach aktueller Norm

2.2 Eurocode 5-2 (2010)

Frequenzkriterium
$$f_{e,1} = \frac{\pi}{2 \cdot l^2} \cdot \sqrt{\frac{EI}{m}} \begin{cases} \leq 5,0 \text{ } Hz \\ \leq 2,5 \text{ } Hz \end{cases}$$
Beschleunigungskriterium
$$a_{vert,n} = a_1 \cdot 0,23 \cdot n \cdot k_{vert} \leq a_{lim}$$
Beschleunigung durch einzelne Person
Fußgänger 1. Harmonische $(f \leq 2,5 \text{ } Hz)$
Fußgänger 2. Harmonische $(2,5 \text{ } Hz < f \leq 5,0 \text{ } Hz)$
Fußgänger 3. Harmonische $(2,5 \text{ } Hz < f \leq 5,0 \text{ } Hz)$
Fußgänger 4. Fußgängeranzahl
Fußgänger 5. Fußgängerstrom
$$n = 0,6 \cdot A$$
Fußgänger- oder Joggergruppe
$$n = 13$$

→ Nachweis der Schwingbeschleunigung nur erforderlich, wenn Eigenfrequenzen im kritischen Frequenzbereich

4. Schwingungsnachweis nach zukünftiger Norm

4.2 Eurocode 5-2 (202X) und Eurocode 1-2 (202X)

Komfortklassen, nach EC0 (202X)

Komfort- klassen	Grad des	Maximale Beschleunigungen $a_{lim}[m/s^2]$		
	Komforts	vertikal	horizontal	
CL 3	maximal	≤ 0,5	≤ 0,15	
CL 2	mittel	≤ 1,0	≤ 0,3	
CL 1	minimal	≤ 2,5	≤ 0,80	
CL 0	Keine Begrenzung	> 2,5	> 0,80	

Verkehrsklassen, nach EC1-2 (202X)

Verkehrs- klassen	Beschreibung	Fußgängerstrom mit Dichte d	Fußgängergruppe n_w	Läufergruppe n_i
		(A)	(B)	(C)
TC 1	sehr geringer Verkehr	$n=0.1 P/m^2$	1	0
TC 2	geringer Verkehr	$n=0.2\ P/m^2$	2	0
TC 3	dichter Verkehr	$n=0.5 P/m^2$	4	1
TC 4	sehr dichter Verkehr	$n=1,0\ P/m^2$	8	2
TC 5	außergewöhnlich dichter Verkehr	$n=1.5\ P/m^2$	16	4

- → Komfort- und Verkehrsklassen sind beliebig kombinierbar
- → Nachweise sind an individuelle Gegebenheiten anpassbar

4. Schwingungsnachweis nach zukünftiger Norm

4.2 Eurocode 5-2 (202X) und Eurocode 1-2 (202X)

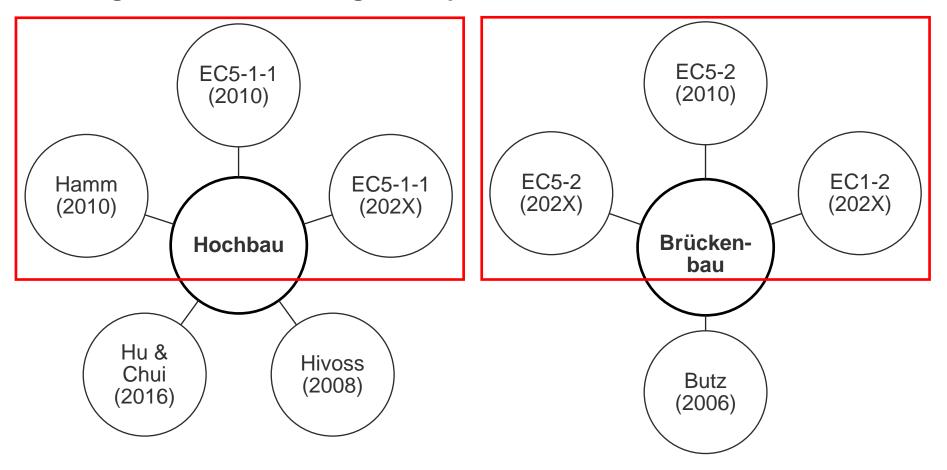
EC5-2 (202X): vereinfachtes Verfahren

EC1-2 (202X): genaues Verfahren

$$a_{vert,n} = a_{vert,1} \cdot n' \cdot \psi_{vert}$$
$$a_{vert,1} = \frac{100}{M^* \cdot \zeta}$$

analytisches Bemessungskonzept

3 Lastmodelle:


- Fußgängerstrom
 Fußgänger(-gruppe)
 Jogger(-gruppe)

numerisches Bemessungskonzept, ersatzweise auch analytisch lösbar

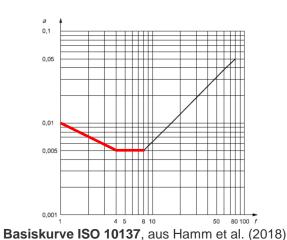
$$a_n = \frac{p^*}{M^*} \cdot \frac{1}{2 \cdot \zeta}$$

nach JRC-Report:

→ EC1-2 (202X) geht von einer numerischen Berechnung aus (z.B. FEM), analytischer Nachweis nur als Ergänzung

5.1 Hochbau

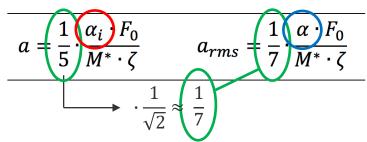
Frequenz

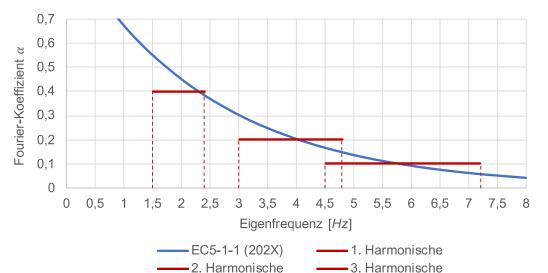

Einflussfaktoren Eigenfrequenz

	EC5-1-1 (2010)	Hamm (2010), EC5-1-1 (202X)
Mindestfrequenz f_{min}	8 Hz	4,5 <i>Hz</i>
Systeme	nur Einfeldträger	Mehrfeld- und Plattensysteme
Biegesteifigkeit des Estrichs	nein	ja
Nutzung	nur Wohnnutzung	verschiedene Kategorien
Lagerbedingungen	starr	starr und nachgiebig

→ Ziel: möglichst genaue Ermittlung der Eigenfrequenzen Resonanz im Bereich der 1. und 2. Harmonischen ist zu vermeiden

5.1 Hochbau


Schwingbeschleunigung



Berechnung der Schwingbeschleunigung:

Hamm (2010)

EC5-1-1 (202X)

Vergleich Fourier-Koeffizienten

Berechnung der Schwingbeschleunigung:

5. Vergleich der Bemessungskonzepte

5.2 Brückenbau

Schwingbeschleunigung

Belastung durch einzelne Person

 $a_n = \underbrace{F_1}_{M^* \cdot \zeta} \underbrace{n' \cdot \psi}$

Gruppeneinfluss

Abminderungsfaktor

Belastung durch einzelnen Fußgänger

Belastung durch einen einzelnen Fußgänger [N]

Richtung	EC5-2 (2010)	EC5-2 (202X)	EC1-2 (202X)
vertikal	100	100	89,12
horizontal	25	25	11,14

→ Nachweis nach EC1-2 (202X) ist günstiger

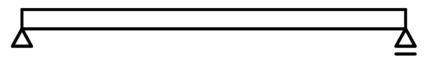
5.2 Brückenbau

Schwingbeschleunigung

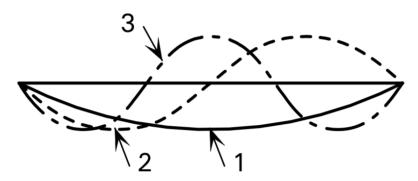
Effektive Personenanzahl

Fußgänger- und Joggergruppen

EC5-2 (2010)	EC5-2 (202X)	EC1-2 (202X)
$n'=0,23\cdot n$	$n'=0,23\cdot n$	$n' = \sqrt{n}$


Verkehrs-	Effektive Anzahl Fußgänger $oldsymbol{n}'$ in Fußgängergruppe			Effektive Anzahl Jogger $m{n}'$ in <code>Joggergruppe</code>		
klasse	EC5-2 (2010)	EC5-2 (202X)	EC1-2 (202X)	EC5-2 (2010)	EC5-2 (202X)	EC1-2 (202X)
TC 1	7	1	1	7	0	0
TC 2		0,46	1,41		0	0
TC 3	- 2,99	0,92	2	- 2,99	1	1
TC 4		1,84	2,83		0,46	1,41
TC 5		3,68	4		0,92	2

→ Effektive Gruppengrößen nach EC5-2 (202X) bisher zu klein!


6. Zusammenfassung und Ausblick

→ Beitrag zu zukünftigen Eurocodes EC5-1-1 (202X) und EC5-2 (202X)

- → Zukünftig:
 - bessere Identifizierung,
 - zutreffendere Bewertung,
 - → Höherer Komfort

Vielen Dank!

Steffen zu Jeddeloh

Universität Stuttgart

Institut für Konstruktion und Entwurf Prof. Dr.-Ing. Ulrike Kuhlmann Pfaffenwaldring 7 70569 Stuttgart

Harrer Ingenieure GmbH

Reinhold-Frank-Str. 48b 76133 Karlsruhe

Felix-Wankel-Str. 6 73760 Ostfildern-Nellingen

